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Bethe ansatz for higher-spinXYZ models—low-lying
excitations

Takashi Takebe†
Department of Mathematical Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo,
153, Japan

Received 24 April 1996

Abstract. A higher-spin generalization of theXYZ spin chain defined by the fusion procedure
is considered. The energy and momentum of the ground state and low-lying excited states of
the model are computed by means of an isomorphism between a space of theta functions on
which the Sklyanin algebra acts and a space obtained by the fusion procedure.

1. Introduction

In this paper we calculate energy and momentum of low-lying excited states of the higher-
spin generalization of theXYZ spin chain model by means of the algebraic Bethe ansatz
method. This work is a continuation of the author’s previous works [1, 2], where a
generalization of the eight-vertex model [3] was studied and the two-particleS-matrix of the
corresponding spin chain model was computed. There we assigned a(2l + 1)-dimensional
space to the vertical edges of the lattice and a two-dimensional space to the horizontal
edges. In the present paper we make use of the fusion procedure (see [4–7]) to assign
a higher-dimensional space to the horizontal edges and then consider the corresponding
one-dimensional quantum spin chain model.

In section 2 we shall give an explicit isomorphism of a representation space of the
Sklyanin algebra which is defined as a space of theta functions with the space of symmetric
tensors. (This is a special case of more general isomorphisms by Hasegawa [8].) Through
this identification we can identify theL operator of the model in [2] with a special case of
R matrices in [6], and use the results in [2] to compute the general models. In particular
this identification is indispensable for the interpretation of a special value of the logarithm
of a transfer matrix and its logarithmic derivative as a momentum and an energy operator.
See, e.g., [9].

As is conjectured in [2] from the corresponding results for the higher-spinXXX and
XXZ models [10–12], the energy and the momentum are independent of the spin of the
local quantum space and are expressed as the sum of two terms, each of which depends on
the rapidity of a hole in the string configuration. Thus we can justify the interpretation of
those states as ‘two-particle states’.

We make use of the results in [2], but adopt simpler normalizations in [13]. In particular,
we normalize theR matrices by the unitarity condition, and therefore they are meromorphic
functions of the spectral parameter, while [6] and [12] use holomorphicR matrices.

† Present address: Department of Mathematics, University of California, Berkeley, CA94720, USA (until August
1997).
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2. Fusion procedure

In this section, we briefly review the fusion procedure for the ellipticR matrices.
Let V l = Sym(V1 ⊗ · · · ⊗ V2l) for l ∈ 1

2Z, whereVi
∼= C2 (i = 1, . . . , 2l) and Sym is

the symmetrizer. The ellipticR matricesRl,l′(u) have the following properties.

(i) Rl,l′(u) is a linear endomorphism ofV l ⊗ V l′ meromorphically depending on a complex
parameteru.
(ii) (Yang–Baxter equation) As an endomorphism ofV l ⊗ V l′ ⊗ V l′′

R
l,l′
12 (u1 − u2)R

l,l′′
13 (u1 − u3)R

l′,l′′
23 (u2 − u3)

= R
l′,l′′
23 (u2 − u3)R

l,l′′
13 (u1 − u3)R

l,l′
12 (u1 − u2). (2.1)

(iii) ( Unitarity) As an endomorphism ofV l ⊗ V l′

R
l,l′
12 (u − v)R

l′,l
21 (v − u) = IdV l⊗V l′ . (2.2)

(iv) When u = 0, Rl,l(u) is a permutation operator: for allv, w ∈ V l

Rl,l(0)(v ⊗ w) = w ⊗ v. (2.3)

They are constructed in [5–7] by the fusion procedure [4] from Baxter’sR matrix
R1/2,1/2(u) = R(u; τ) defined by

R(u) =
3∑

a=0

Wa(u)σ a ⊗ σa Wa(u) := θga
(u; τ)θ11(2η; τ)

2θga
(η; τ)θ11(u + 2η; τ)

(2.4)

whereg0 = (11), g1 = (10), g2 = (00), g3 = (01). The explicit definition ofRl,l′ is

R
1/2,l′

Vi ,V l′ (u) := Sym2l′...1 RVi,V2l′ (u + (2l′ − 1)η) · · ·

· · ·RVi,V
(u + (2j − 2l′ − 1)η) · · ·RVi,V1

(u + (−2l′ + 1)η) (2.5)

R
l,l′

V l,V l′ (u) := Sym1...2l R
1/2,l′

V2l ,V l′ (u + (2l − 1)η) · · ·

· · ·R1/2,l′

Vj ,V l′ (u + (2j − 2l − 1)η) · · ·R1/2,l′

V1,V l′ (u + (−2l + 1)η). (2.6)

HereVi
∼= V

∼= C2, the suffices ofR designate the spaces on which theR matrix acts and
Sym1...m is the symmetrizer on the spaceV1 ⊗ · · · ⊗ Vm, etc.

There is another expression ofR1/2,l′(u) in terms of the representation of the Sklyanin
algebra which we used in [2]. The Sklyanin algebra [14]Uτ,η(sl(2)) is generated by four
generatorsS0, S1, S2 and S3 satisfying the relations coming from the Yang–Baxter-type
relation of theL operator,L(u), defined by

L(u) =
3∑

a=0

WL
a (u)σ a ⊗ Sa WL

a (u) = θga
(u)

2θ11(2η)θga
(η)

. (2.7)

The Sklyanin algebra has a representation on a space of theta functions

ρ(l) : Uτ,η(sl(2)) → EndC(24l+
00 ) (2.8)

24l+
00 =

{
f (y): holomorphic onC

∣∣∣∣ f (y + 1) = f (−y) = f (y)

f (y + τ) = e−4lπ i(2y+τ)f (y)

}
. (2.9)
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It is easy to see that dim24l+
00 = 2l + 1. The generatorsSa act on this space as

difference operators. See [15] and appendix A of [2], [13]. We fix a basis of22+
00 ,

(θ00(2y; 2τ) − θ10(2y; 2τ), θ00(2y; 2τ) + θ10(2y; 2τ)) and identify22+
00 with C2 through

this basis. Then we fix an isomorphism of the space of symmetric tensors and the spinl

representation space of the Sklyanin algebra as follows:

V l = Sym(V1 ⊗ · · · ⊗ V2l) 3 Sym(f1(y1) ⊗ · · · ⊗ f2l(y2l))

7→ f1(y) · · · f2l(y) ∈ V l = 24l+
00 (2.10)

whereVi
∼= C2 (i = 1, . . . , 2l) identified with22+

00 , fi(yi) ∈ Vi and Sym is the symmetrizer.
Under this identification theL operator (2.7) is proportional to theR matrix defined by (2.5):

R1/2,l(u) = θ11(2η)

θ11(u + (2l + 1)η)
IdC2 ⊗ρ(l)(L(u + η)). (2.11)

This can be verified by comparing the action of both sides on the intertwining vectors.
(See lemma 2.1.3 and theorem 2.3.3 of the third reference in [6] for the left-hand side and
equations (1.18)–(1.21) of [13] for the right-hand side. See also [8] for the general cases.)

As is the case with the trigonometric and rationalR matrix, there is a recurrence
relation with respect to the auxiliary spin [16, 12]. LetRl,l′(u) and R1/2,l′(u) be theR

matrices on the spaces Sym(V2l ⊗ · · ·V1) ⊗ V l′ andV0 ⊗ V l′ , respectively. HereVi
∼= C2

(i = 1, . . . , 2l) andV l′ is a space of symmetric tensors defined above. Then as an operator
on Sym(V2l ⊗ · · ·V1) ⊗ V0 ⊗ V l′

Rl,l′(u + η)R1/2,l′(u − 2lη)

=
 Rl+1/2,l′(u) 0

∗ q-detR1/2,l′(u − (2l − 1)η)

×Rl−1/2,l′(u + 2η)

 (2.12)

where q-detR is the quantum determinant [17] defined by

q-detR1/2,l′(u) = tr01 P −
01R

1/2,l′(u + η)R1/2,l′(u − η) = θ11(u − 2l′η)

θ11(u + 2l′η)
IdV l′ (2.13)

(P −
01 is a projection to the antisymmetric tensor inV1⊗V0). The block structure of the right-

hand side of (2.12) comes from the decomposition of the tensor product of the auxiliary
spaces by the Young symmetrizers as follows:

1 2 · · · 2l ⊗ 0 = 0 1 2 · · · 2l ⊕ 1 2 · · · 2l

0
. (2.14)

Here we denote the image of the Young symmetrizer by the corresponding Young tableau.
Since the second Young symmetrizer on the right-hand side of (2.14) gives an isomorphism
from the space Sym(V2l ⊗· · ·⊗V2)⊗ Ant(V1 ⊗V0) ∼= Sym(V2l ⊗· · ·⊗V2) to its image, we
identify these spaces in the right lower corner of the right-hand side of (2.12). The proof
of this equation is based on lemma 5 of [5] and is done by the same argument as that given
in section 1 of [16].

3. Higher-spin XY Z model

In this section we define a higher-spin generalization of theXYZ model and apply the
algebraic Bethe ansatz.
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The state space of our model is

H = V l

1
⊗ V l

2
⊗ · · · ⊗ V l

N
(3.1)

where V l


∼= V l . We define the model by specifying the transfer matrix, namely the
generating function of the quantum integrals of motion, as follows:

T l′,l(u) := trV l′ R
l′,l
V l′ ,V l

N

(u) · · ·Rl′,l
V l′ ,V l

1

(u) ∈ EndC(H) (3.2)

whereRV l′ ,V l


acts non-trivially only on the componentV l′ ⊗ V l
 of V l′ ⊗ H. The most

important property of the transfer matrix is the commutativity relation

[T l′,l(u), T l′′,l(v)] = 0 (3.3)

which is a consequence of the Yang–Baxter equation (2.1).
Thanks to equation (2.3), we can define a momentum operatorp and a HamiltonianH

of the spin chain by

p = 1

i
logT l,l(0) H = constant× d

du
logT l,l(u)

∣∣∣∣
u=0

(3.4)

where we do not fix the constant here (see [9, 18, 10–12].)
Due to the recurrence relation of theR matrix (2.12), the transfer matrix satisfies the

following recurrence relation:

T l′+1/2,l(u) = T l′,l(u + η)T 1/2,l(u − 2l′η) − θ11(u + (−2l′ + 1 − 2l)η)

θ11(u + (−2l′ + 1 + 2l)η)
T l′−1/2,l(u + 2η).

(3.5)

Hence the diagonalization problem ofT l′,l(u) reduces to that ofT 1/2,l(u).
Hereafter we assume that the elliptic modulusτ is a pure imaginary numberτ = i/t ,

t > 0 and the anisotropy parameterη = r ′/r is a rational number. We also assume that
M = Nl is an integer.

It was shown in [1] that there exist vectors9ν(w1, . . . , wM) depending on an integerν
and complex parameters(w1, . . . , wM) such that

T 1/2,l(u)9ν(w1, . . . , wM) = t1/2,l(u; ν, w1, . . . , wM)9ν(w1, . . . , wM) (3.6)

provided that(ν; w1, . . . , wM) satisfy the Bethe equations:(
θ11(wj + 2lη; τ)

θ11(wj − 2lη; τ)

)N

= e−4π iνη
M∏

k=1
k 6=j

θ11(wj − wk + 2η; τ)

θ11(wj − wk − 2η; τ)
(3.7)

for all j = 1, . . . , M. The eigenvaluet1/2,l(u) is equal to

t1/2,l(u; ν, w1, . . . , wM) = Q(u − 2η)

Q(u)
+ h(u)

Q(u + 2η)

Q(u)
(3.8)

where

Q(u) := e−π iνu
M∏

j=1

θ11(u − wj + η) h(u) :=
(

θ11(u + (−2l + 1)η)

θ11(u + (2l + 1)η)

)N

. (3.9)

Inductively using the recurrence relation (3.5), we can prove that the eigenvalue ofT l′,l(u) is

t l
′,l(u; ν, w1, . . . , wM) =

2l′∑
j=0

a
l′,l
j (u)

Q(u + (2l′ + 1)η)Q(u − (2l′ + 1)η)

Q(u + (2l′ + 1 − 2j)η)Q(u + (2l′ − 1 − 2j)η)

(3.10)

wherea
l′,l
0 (u) = 1, a

l′,l
j (u) = ∏j

k=1 h(u + (2l′ + 1 − 2k)η).
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4. The thermodynamic limit

In this section, making use of the results of [2], we compute several thermodynamic
quantities of our spin chains.

First let us recall several facts concerning the solutions of the Bethe equations (3.7) that
we found in [2]. These solutions satisfy the string hypothesis, which goes back to Bethe
[19]. For later convenience we rescale the parameters as follows:x = itu, xj = itwj . In
this notation the string hypothesis says that for sufficiently largeN , the solutions of (3.7)
cluster into groups known asA-strings,A = 1, 2, . . ., with parity ± and centrexA,±

j :

x
A,±
j,α = x

A,±
j + 2iηtα + O(e−δN ) α = −A + 1

2
,
−A + 3

2
, . . . ,

A − 1

2
(4.1)

where Imx
A,+
j = 0 and Imx

A,−
j = t/2. We denote the number ofA-strings with parity±

by ](A, ±).
We consider the following string configurations, which are consistent with the constraints

found in [20] whenη = r ′/r, r, r ′ are integers mutually coprime,r is even,r ′ is odd, and
2(2l + 1)η < 1, as assumed in [2].

• Ground state:ν = 0, ](2l, +) = N/2, ](A, ±) = ](2l, −) = 0 for A 6= 2l and centres of
2l-strings distributed symmetrically around 0.
• Excited state I:](2l, +) = N/2 − 2, ](2l − 1, +) = 1, ](2l + 1, +) = 1.

There are two holes in the distribution of 2l-strings which are denoted byx1 and
x2 and are regarded as continuous parameters of the configuration. The Bethe equations
determine the coordinates of the centres of the(2l ± 1)-string which are denoted by
x±. There are two possibilities:(x−, x+) = ((x1 + x2)/2, (x1 + x2)/2) or (x−, x+) =
((x1 + x2)/2, (x1 + x2 + 1)/2).
• Excited state II:](2l, +) = N/2 − 1, ](2l − 1, +) = 1, ](1, −) = 1.

There are again two holes in the distribution of 2l-strings which are denoted byx1

and x2. The Bethe equations determine the coordinates of the centres of the(2l − 1)-
string and the 1-string with parity− which are denoted byx− and x0 respectively:
(x−, x0) = ((x1 + x2)/2, (x1 + x2)/2) or (x−, x0) = ((x1 + x2)/2, (x1 + x2 + 1)/2).

Using the results of [2], we obtain the following asymptotics of the eigenvalue of the
transfer matrixt l,l(u) for largeN . The largest eigenvalue oft l,l which corresponds to the
ground state is

1

i
log t l,l(u; ground state)

∼ N

(
πl + 2πlx(1 − 4lη) + 2

∞∑
n=1

sinh 4πnlηt sinhπnt(1 − 4lη)

n sinhπnt sinh 4πnηt
sin 2πnx

)
.

(4.2)

The excited states I and II have the same eigenvalue of the transfer matrixt l,l(u), namely

1

i
log t l,l(u; excited state I or II) − 1

i
log t l,l(u; ground state)

= logτ(x − x1) + logτ(x − x2) (4.3)

where

logτ(x) := −π

2
− πx −

∞∑
n=1

sin 2πnx

n cosh 2πnηt
. (4.4)
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(see [21] and [2] for details of the computations). By definition (3.4), the momentum and
the energy of these excited states are expressed asp = p1 + p2, H = H1 + H2 where

pi := −π

2
+ πxi +

∞∑
n=1

sin 2πnxi

n cosh 2πnηt
(4.5)

Hi := constant×
(

−π − 2π

∞∑
n=1

cos 2πnxi

cosh 2πnηt

)
. (4.6)

Thus they are regarded as two-particle, spin-wave modes, each particle of which has rapidity
xi , momentumpi and energyHi . In particular, equations (4.5) and (4.6) show that the
dispersion relation of these particles do not depend onl.
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